a=2(478)/1.63^2

Simple and best practice solution for a=2(478)/1.63^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a=2(478)/1.63^2 equation:



a=2(478)/1.63^2
We move all terms to the left:
a-(2(478)/1.63^2)=0
We get rid of parentheses
a-2478/1.63^2=0
We multiply all the terms by the denominator
a*1.63^2-2478=0
Wy multiply elements
a^2-2478=0
a = 1; b = 0; c = -2478;
Δ = b2-4ac
Δ = 02-4·1·(-2478)
Δ = 9912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9912}=\sqrt{4*2478}=\sqrt{4}*\sqrt{2478}=2\sqrt{2478}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2478}}{2*1}=\frac{0-2\sqrt{2478}}{2} =-\frac{2\sqrt{2478}}{2} =-\sqrt{2478} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2478}}{2*1}=\frac{0+2\sqrt{2478}}{2} =\frac{2\sqrt{2478}}{2} =\sqrt{2478} $

See similar equations:

| X-0.4x=16.8 | | 73/73=x+4/140 | | 4=x+43/7 | | -7=-14+x/4 | | s=64+3.75 | | 8+y=28 | | 20-x+14=29 | | 8+y=63 | | 0.8(x+7)=20 | | (5x+52)=108 | | 1.5^x=1 | | -7x+5=5x-19 | | -7+5=5x-19 | | 2x^2-1=195 | | -0.4a-3=7 | | -.5x-12=-3x-29.5 | | 24.5x+90.5=32x+45.5 | | Y=2x^2+5x-5 | | 60n^2+234n+84=0 | | 5e-1=3e+5 | | -16+x-9x=16 | | 3+6=2x-9 | | 3y-41=180 | | 104+x=3x | | 9=x-2(x-2+x+4) | | 0.5(5-7x)=8-4x-16 | | l=2(2.5)-1 | | l=2(3.5)-1 | | 16p-6=4p+24 | | X+0=10x | | v+1.34=5.92 | | 4x^2x(2)=32 |

Equations solver categories